Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Pediatrics ; 152(4)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37750210

ABSTRACT

OBJECTIVES: Studies concerning cardiopulmonary outcomes of adults born with congenital diaphragmatic hernia (CDH) are sparse. Moreover, they don't include participants who have been treated with extracorporeal membrane oxygenation (ECMO) during the neonatal period. This study evaluated the cardiopulmonary morbidities in young adults born with CDH. METHODS: We assessed 68 participants between the ages of 18 and 30 years. The assessment included auxology assessment, lung function tests, pulmonary imaging, cardiopulmonary exercise testing, and echocardiography. RESULTS: Lung function parameters in the overall group were significantly worse than normal values. Mean (SD) scores postbronchodilator forced expiratory volume in 1 second were -2.91 (1.38) in the ECMO-treated and -1.20 (1.53) in the non-ECMO-treated participants. Chest computed tomography scans showed mild to moderate abnormal lung structure in all ECMO-treated participants, and to a lesser extent in non-ECMO treated participants. A recurrent diaphragmatic defect was observed in 77% of the ECMO-treated group and in 43% of the non-ECMO-treated group. Except for 2 cases with acute symptoms, no clinical problems were noted in cases of recurrence. Cardiopulmonary exercise testing revealed mean (SD) percentage predicted peak oxygen consumption per kilogram of 73 (14)% and 88 (16)% in ECMO-treated and non-ECMO-treated participants, respectively. The mean (SD) workload was normal in the non-ECMO-treated group (111 [25]% predicted); in the ECMO-treated group, it was 89 (23)%. Cardiac evaluation at rest revealed no signs of pulmonary hypertension. CONCLUSIONS: In young adults who survived treatment of CDH, significant pulmonary morbidity, reduced exercise capacity, and frequent hernia recurrence should be anticipated. Lifelong follow-up care, with the emphasis on prevention of further decline, is to be recommended.

3.
Front Pediatr ; 11: 1098248, 2023.
Article in English | MEDLINE | ID: mdl-37009270

ABSTRACT

Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.

5.
Eur J Pediatr ; 182(1): 295-306, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334170

ABSTRACT

In patients with congenital heart disease (CHD), reduced exercise capacity can be a predictor for late complications and may be used to guide interventions. Yet, the interpretation of exercise capacity is challenged by changes in body composition during growth. Our aim was to create an overview of disease-specific exercise capacity in children with CHD. We performed a multicentre retrospective study of exercise capacity of CHD patients, aged 6-18 years, tested between January 2001 and October 2018. Sex-specific distribution graphs were made using the LMS method and height to relate to body size. We included all CHD with N > 50, including severe defects (e.g., univentricular heart, tetralogy of Fallot) and "simple" lesions as ventricular septum defect and atrial septum defect. We included 1383 tests of 1208 individual patients for analysis. The peak oxygen uptake (VO2peak, 37.3 ml/min/kg (25th-75th percentile 31.3-43.8)) varied between specific defects; patients with univentricular hearts had lower VO2peak compared with other CHD. All groups had lower VO2peak compared to healthy Dutch children. Males had higher VO2peak, Wpeak and O2pulsepeak than females. Sex- and disease-specific distribution graphs for VO2peak, Wpeak and O2pulsepeak showed increase in variation with increase in height.   Conclusion: Disease-specific distribution graphs for exercise capacity in children with CHD from a large multicentre cohort demonstrated varying degrees of reduced VO2peak and Wpeak. The distribution graphs can be used in the structured follow-up of patients with CHD to predict outcome and identify patients at risk. What is Known: • Children with congenital heart disease (COnHD) are at risk to develop heart failure, arrhytmia's and other complications. Exercise capacity may be an important predictor for outcome in children with ConHD. In children, the interpretation of exercise capacity poses an additional challenge related to physical changes during growth. What is New: • In this report of a multi-center cohort >1300 childrewn with ConHD, we related the changes in exercise capacity to length. We demonstrated that exercise capacity was reduced as compared with healthy children and we observed variation between disease groups. Patients with a univentricular circulation (Fontan) had worse exercise capacity. We constructed disease specific charts of development of exercise capacity throughout childhood, accessible via a web-site. These graphs may help practitioner to guide children with ConHD.


Subject(s)
Heart Defects, Congenital , Heart Septal Defects, Ventricular , Child , Female , Humans , Male , Exercise Test/methods , Exercise Tolerance , Oxygen Consumption , Retrospective Studies
6.
Cardiol Rev ; 31(1): 7-15, 2023.
Article in English | MEDLINE | ID: mdl-34495894

ABSTRACT

Secondary tricuspid regurgitation (TR) has long been considered a benign and well-tolerated valvular lesion that resolves after treatment of the underlying disease. This view has been challenged by data indicating that long-standing TR can be a progressive disorder, contributing to right ventricular failure and end-organ damage, despite adequate treatment of the underlying disease. Surgical correction is curative, but infrequently performed and historically associated with poor outcomes. This may be due to delayed diagnosis, lack of well-defined surgical indications, and, consequently, late intervention in patients in poor clinical condition with failing right ventricles. Because of limited evidence about timing and corresponding outcome of tricuspid valve surgery, current guideline recommendations are rather conservative and show several inconsistencies. Nevertheless, there has been a trend toward a more aggressive approach in the surgical treatment of TR with improved outcomes. Moreover, emerging transcatheter options claim to provide a lower-risk alternative for selected patients. This may facilitate earlier treatment and improve the attitude toward an early treatment strategy of secondary TR, yet is not reflected in the guidelines. Future research is needed for risk stratification to determine inclusion criteria and optimal timing for intervention.


Subject(s)
Cardiac Surgical Procedures , Heart Failure , Heart Valve Prosthesis Implantation , Tricuspid Valve Insufficiency , Humans , Tricuspid Valve Insufficiency/surgery , Tricuspid Valve Insufficiency/etiology , Treatment Outcome , Heart Ventricles , Heart Valve Prosthesis Implantation/adverse effects
7.
Int J Cardiol ; 361: 31-37, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35487320

ABSTRACT

BACKGROUND: To determine the potential prognostic value and clinical correlations of blood biomarkers in a cohort of patients with Tetralogy of Fallot (TOF). METHODS: In the setting of multicenter prospective research studies TOF patients underwent blood sampling, cardiopulmonary exercise testing and low-dose dobutamine stress cardiac magnetic resonance (CMR) imaging. In the blood sample NT-proBNP, GDF-15, Galectin-3, ST-2, DLK-1, FABP4, IGFBP-1, IGFBP-7, MMP-2, and vWF were assessed. During subsequent follow-up, patients were evaluated for reaching the study endpoint (cardiac death, arrhythmia-related hospitalization or cardioversion/ablation, VO2 max ≤65% of predicted). Regression analysis was used to explore the correlation between blood biomarkers (corrected for age and gender) and other clinical parameters. The potential predictive value of blood biomarkers and events were assessed with Kaplan-Meier analysis and Cox proportional hazard analysis. RESULTS: We included 137 Fallot patients, median age 19.2 (interquartile range: 14.6-25.7) years, median age at TOF-repair 0.9 (0.5-1.9) years. After a median follow-up of 8.7 (6.3-10.7) years, 20 (14.6%) patients reached the composite endpoint. In a multivariable cox-regression analysis corrected for age at study baseline, elevated IGFBP-7 and MMP-2 levels were associated with the composite endpoint. We also noted a correlation between DLK-1 and relative change in right ventricular end systolic volume during dobutamine stress CMR (ß = -0.27, p = 0.010), a correlation between FABP4 and Max VO2 (ß = -0.41, p ≤0.001 and between MMP-2 and tricuspid valve E/A ratio (ß = -0.15, p = 0.037). CONCLUSIONS: IGFBP-7, MMP-2 and DLK-1 levels are related to cardiac function and long-term outcome in TOF patients.


Subject(s)
Tetralogy of Fallot , Adolescent , Adult , Biomarkers , Dobutamine , Humans , Matrix Metalloproteinase 2 , Prospective Studies , Tetralogy of Fallot/complications , Tetralogy of Fallot/diagnostic imaging , Tetralogy of Fallot/surgery , Young Adult
8.
J Thorac Cardiovasc Surg ; 164(6): e493-e510, 2022 12.
Article in English | MEDLINE | ID: mdl-34922752

ABSTRACT

OBJECTIVES: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. METHODS: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. RESULTS: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. CONCLUSIONS: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.


Subject(s)
Heart Failure , Ventricular Dysfunction, Right , Rats , Animals , Hypertrophy, Right Ventricular/metabolism , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/prevention & control , Ventricular Dysfunction, Right/metabolism , Ventricular Pressure/physiology , Neuregulin-1/genetics , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , Ventricular Function, Right , Myocytes, Cardiac/metabolism , Fibrosis , Heart Failure/metabolism , Cell Cycle , Disease Models, Animal
9.
Cardiol Young ; 31(8): 1343-1344, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33618793

ABSTRACT

A newborn with hypoplastic left heart underwent a Norwood operation. Obstruction of the Blalock-Thomas-Taussig shunt was treated with a stent. During resuscitation, this was compressed, which contributed to a fatal outcome.


Subject(s)
Hypoplastic Left Heart Syndrome , Norwood Procedures , Humans , Hypoplastic Left Heart Syndrome/surgery , Infant, Newborn , Norwood Procedures/adverse effects , Stents/adverse effects , Treatment Outcome
10.
J Am Heart Assoc ; 10(5): e015022, 2021 02.
Article in English | MEDLINE | ID: mdl-33624507

ABSTRACT

Background Patients who have undergone the Fontan procedure are at high risk of circulatory failure. In an exploratory analysis we aimed to determine the prognostic value of blood biomarkers in a young cohort who have undergone the Fontan procedure. Methods and Results In multicenter prospective studies patients who have undergone the Fontan procedure underwent blood sampling, cardiopulmonary exercise testing, and stress cardiac magnetic resonance imaging. Several biomarkers including NT-proBNP (N-terminal pro-B-type natriuretic peptide), GDF-15 (growth differentiation factor 15), Gal-3 (galectin-3), ST2 (suppression of tumorigenicity 2), DLK-1 (protein delta homolog 1), FABP-4 (fatty acid-binding protein 4), IGFBP-1 (insulin-like growth factor-binding protein 1), IGFBP-7, MMP-2 (matrix metalloproteinase 2), and vWF (von Willebrand factor) were assessed in blood at 9.6 (7.1-12.1) years after Fontan completion. After this baseline study measurement, follow-up information was collected on the incidence of adverse cardiac events, including cardiac death, out of hospital cardiac arrest, heart transplantation (listing), cardiac reintervention (severe events), hospitalization, and cardioversion/ablation for arrhythmias was collected and the relation with blood biomarkers was assessed by Cox proportional hazard analyses. The correlation between biomarkers and other clinical parameters was evaluated. We included 133 patients who have undergone the Fontan procedure, median age 13.2 (25th, 75th percentile 10.4-15.9) years, median age at Fontan 3.2 (2.5-3.9) years. After a median follow-up of 6.2 (4.9-6.9) years, 36 (27.1%) patients experienced an event of whom 13 (9.8%) had a severe event. NT-proBNP was associated with (all) events during follow-up and remained predictive after correction for age, sex, and dominant ventricle (hazard ratio, 1.89; CI, 1.32-2.68). The severe event-free survival was better in patients with low levels of GDF-15 (P=0.005) and vWF (P=0.008) and high levels of DLK-1 (P=0.041). There was a positive correlation (ß=0.33, P=0.003) between DLK-1 and stress cardiac magnetic resonance imaging functional reserve. Conclusions NT-proBNP, GDF-15, vWF, DLK-1, ST-2 FABP-4, and IGFBP-7 levels relate to long-term outcome in young patients who have undergone the Fontan procedure.


Subject(s)
Biomarkers/blood , Fontan Procedure/adverse effects , Heart Defects, Congenital/surgery , Postoperative Complications/blood , Risk Assessment/methods , Adolescent , Child , Female , Humans , Incidence , Male , Netherlands/epidemiology , Postoperative Complications/epidemiology , Prognosis , Prospective Studies , Survival Rate/trends , Young Adult
11.
Br J Clin Pharmacol ; 87(3): 1069-1081, 2021 03.
Article in English | MEDLINE | ID: mdl-32643213

ABSTRACT

AIM: Risperidone is the most commonly prescribed antipsychotic drug to children and adolescents worldwide, but it is associated with serious side effects, including weight gain. This study assessed the relationship of risperidone and 9-hydroxyrisperidone trough concentrations, maximum concentrations and 24-hour area under the curves (AUCs) with body mass index (BMI) z-scores in children and adolescents with autism spectrum disorder (ASD) and behavioural problems. Secondary outcomes were metabolic, endocrine, extrapyramidal and cardiac side effects and effectiveness. METHODS: Forty-two children and adolescents (32 males) aged 6-18 years were included in a 24-week prospective observational trial. Drug plasma concentrations, side effects and effectiveness were measured at several time points during follow-up. Relevant pharmacokinetic covariates, including medication adherence and CYP2D6, CYP3A4, CYP3A5 and P-glycoprotein (ABCB1) genotypes, were measured. Nonlinear mixed-effects modelling (NONMEM®) was used for a population pharmacokinetic analysis with 205 risperidone and 205 9-hydroxyrisperidone concentrations. Subsequently, model-based trough concentrations, maximum concentrations and 24-hour AUCs were analysed to predict outcomes using generalized and linear mixed-effects models. RESULTS: A risperidone two-compartment model combined with a 9-hydroxyrisperidone one-compartment model best described the measured concentrations. Of all the pharmacokinetic parameters, higher risperidone sum trough concentrations best predicted higher BMI z-scores during follow-up (P < .001). Higher sum trough concentrations also predicted more sedation (P < .05), higher prolactin levels (P < .001) and more effectiveness measured with Aberrant Behavior Checklist irritability score (P < .01). CONCLUSION: Our results indicate a therapeutic window exists, which suggests that therapeutic drug monitoring of risperidone might increase safety and effectiveness in children and adolescents with ASD and behavioural problems.


Subject(s)
Antipsychotic Agents , Autism Spectrum Disorder , Adolescent , Antipsychotic Agents/adverse effects , Autism Spectrum Disorder/drug therapy , Child , Cytochrome P-450 CYP2D6/genetics , Humans , Male , Paliperidone Palmitate/adverse effects , Risperidone/adverse effects
12.
Heart Fail Rev ; 26(6): 1447-1466, 2021 11.
Article in English | MEDLINE | ID: mdl-32556672

ABSTRACT

The right ventricle has long been perceived as the "low pressure bystander" of the left ventricle. Although the structure consists of, at first glance, the same cardiomyocytes as the left ventricle, it is in fact derived from a different set of precursor cells and has a complex three-dimensional anatomy and a very distinct contraction pattern. Mechanisms of right ventricular failure, its detection and follow-up, and more specific different responses to pressure versus volume overload are still incompletely understood. In order to fully comprehend right ventricular form and function, evolutionary biological entities that have led to the specifics of right ventricular physiology and morphology need to be addressed. Processes responsible for cardiac formation are based on very ancient cardiac lineages and within the first few weeks of fetal life, the human heart seems to repeat cardiac evolution. Furthermore, it appears that most cardiogenic signal pathways (if not all) act in combination with tissue-specific transcriptional cofactors to exert inductive responses reflecting an important expansion of ancestral regulatory genes throughout evolution and eventually cardiac complexity. Such molecular entities result in specific biomechanics of the RV that differs from that of the left ventricle. It is clear that sole descriptions of right ventricular contraction patterns (and LV contraction patterns for that matter) are futile and need to be addressed into a bigger multilayer three-dimensional picture. Therefore, we aim to present a complete picture from evolution, formation, and clinical presentation of right ventricular (mal)adaptation and failure on a molecular, cellular, biomechanical, and (patho)anatomical basis.


Subject(s)
Heart Ventricles , Ventricular Dysfunction, Right , Humans , Myocytes, Cardiac , Phenotype , Ventricular Function, Left , Ventricular Function, Right
13.
JACC Clin Electrophysiol ; 6(14): 1739-1743, 2020 12.
Article in English | MEDLINE | ID: mdl-33357569

ABSTRACT

This study sought to investigate whether pediatric patients with congenital heart disease (CHD) already have atrial conduction disorders early in life. The authors conducted first-in-children epicardial mapping in 10 pediatric patients with CHD undergoing primary open heart surgery. Areas of conduction delay (CD) and block (CB) were present in all patients and were particularly observed at Bachmann's bundle (CD: 4.9%; CB: 2.3%), followed by the right atrium (CD: 3.7%; CB: 1.6%) and, to a lesser degree, the left atrium (CD: 1.8%; CB: 1.0%). Conduction abnormalities may by aggravated over time (e.g., aging, residual lesions, or valvular dysfunction), predisposing these patients to atrial arrhythmias early in life.


Subject(s)
Heart Conduction System , Heart Defects, Congenital , Cardiac Conduction System Disease , Child , Epicardial Mapping , Heart Atria , Heart Defects, Congenital/complications , Humans
14.
Sci Transl Med ; 12(554)2020 07 29.
Article in English | MEDLINE | ID: mdl-32727916

ABSTRACT

Pulmonary arterial hypertension (PAH) in congenital cardiac shunts can be reversed by hemodynamic unloading (HU) through shunt closure. However, this reversibility potential is lost beyond a certain point in time. The reason why PAH becomes irreversible is unknown. In this study, we used MCT+shunt-induced PAH in rats to identify a dichotomous reversibility response to HU, similar to the human situation. We compared vascular profiles of reversible and irreversible PAH using RNA sequencing. Cumulatively, we report that loss of reversibility is associated with a switch from a proliferative to a senescent vascular phenotype and confirmed markers of senescence in human PAH-CHD tissue. In vitro, we showed that human pulmonary endothelial cells of patients with PAH are more vulnerable to senescence than controls in response to shear stress and confirmed that the senolytic ABT263 induces apoptosis in senescent, but not in normal, endothelial cells. To support the concept that vascular cell senescence is causal to the irreversible nature of end-stage PAH, we targeted senescence using ABT263 and induced reversal of the hemodynamic and structural changes associated with severe PAH refractory to HU. The factors that drive the transition from a reversible to irreversible pulmonary vascular phenotype could also explain the irreversible nature of other PAH etiologies and provide new leads for pharmacological reversal of end-stage PAH.


Subject(s)
Heart Defects, Congenital , Pulmonary Arterial Hypertension , Animals , Cellular Senescence , Endothelial Cells , Familial Primary Pulmonary Hypertension , Humans , Rats
15.
Cardiol Young ; 30(6): 753-760, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32513314

ABSTRACT

OBJECTIVE: N-terminal pro-brain natriuretic peptide has an established role in the diagnosis and prognosis of heart failure. In Fontan patients, this peptide is often increased, but its diagnostic value in this particular non-physiologic, univentricular circulation is unclear. We investigated whether N-terminal pro-brain natriuretic peptide represents ventricular function or other key variables in Fontan patients. METHODS AND RESULTS: Ninety-five consecutive Fontan patients ≥10 years old who attended the outpatient clinic of the Center for Congenital Heart Diseases in 2012-2013 were included. Time since Fontan completion was 16 ± 9 years. Median N-terminal pro-brain natriuretic peptide was 114 (61-264) ng/l and was higher than gender-and age-dependent normal values in 54% of the patients. Peptide Z-scores were higher in patients in NYHA class III/IV compared to those in class I/II, but did not correlate with ventricular function assessed by MRI and echocardiography, nor with peak exercise capacity. Instead, peptide Z-scores significantly correlated with follow-up duration after Fontan completion (p < 0.001), right ventricular morphology (p = 0.004), indexed ventricular mass (p = 0.001), and inferior caval vein diameter (p < 0.001) (adjusted R2 = 0.615). CONCLUSIONS: N-terminal pro-brain natriuretic peptide levels in Fontan patients correlate with functional class, but do not necessarily indicate ventricular dysfunction. Increased peptide levels were associated with a longer existence of the Fontan circulation, morphologic ventricular characteristics, and signs of increased systemic venous congestion. Since the latter are known to be key determinants of the performance of the Fontan circulation, these findings suggest increase in N-terminal pro-brain natriuretic peptide levels to indicate attrition of the Fontan circulation, independent of ventricular function.


Subject(s)
Fontan Procedure , Heart Defects, Congenital/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Adolescent , Adult , Biomarkers/blood , Cross-Sectional Studies , Echocardiography , Female , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/surgery , Humans , Linear Models , Magnetic Resonance Imaging , Male , Prognosis , Ventricular Function , Young Adult
16.
J Am Heart Assoc ; 8(21): e012086, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31657265

ABSTRACT

Background Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation. Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different experimental models and disease severity. In this systematic review and meta-analysis, we aimed to identify metabolic changes in the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human disease. Methods and Results Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in the pressure loaded RV. We identified mostly rat-models, inducing pressure load by hypoxia, Sugen-hypoxia, monocrotaline (MCT), pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta-analysis revealed increased Hedges' g (effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased. Mitochondrial respiratory capacity and fatty acid uptake varied considerably between studies, yet there was a model effect in carbohydrate respiratory capacity in MCT-rats. Conclusions This systematic review and meta-analysis on metabolic remodeling in the pressure-loaded RV showed a consistent increase in glucose uptake and glycolysis, strongly suggest a downregulation of beta-oxidation, and showed divergent and model-specific changes regarding fatty acid uptake and oxidative metabolism. To translate metabolic results from animal models to human disease, more extensive characterization, including function, and uniformity in methodology and studied variables, will be required.


Subject(s)
Fatty Acids/metabolism , Glucose/metabolism , Heart Ventricles/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Ventricular Remodeling/physiology , Animals , Humans , Mitochondria/physiology
17.
J Clin Med ; 8(8)2019 08 12.
Article in English | MEDLINE | ID: mdl-31409013

ABSTRACT

Pulmonary hypertension (PH) as a result of pulmonary vein stenosis (PVS) is extremely difficult to treat. The ideal therapy should not target the high-pressure/low-flow (HP/LF) vasculature that drains into stenotic veins, but only the high-pressure/high-flow (HP/HF) vasculature draining into unaffected pulmonary veins, reducing vascular resistance and pressure without risk of pulmonary oedema. We aimed to assess the activity of the nitric oxide (NO) pathway in PVS during the development of PH, and investigate whether interventions in the NO pathway differentially affect vasodilation in the HP/HF vs. HP/LF territories. Swine underwent pulmonary vein banding (PVB; n = 7) or sham surgery (n = 6) and were chronically instrumented to assess progression of PH. Pulmonary sensitivity to exogenous NO (sodium nitroprusside, SNP) and the contribution of endogenous NO were assessed bi-weekly. The pulmonary vasodilator response to phosphodiesterase-5 (PDE5) inhibition was assessed 12 weeks after PVB or sham surgery. After sacrifice, 12 weeks post-surgery, interventions in the NO pathway on pulmonary small arteries isolated from HP/LF and HP/HF territories were further investigated. There were no differences in the in vivo pulmonary vasodilator response to SNP and the pulmonary vasoconstrictor response to endothelial nitric oxide synthase (eNOS) inhibition up to 8 weeks after PVB as compared to the sham group. However, at 10 and 12 weeks post-PVB, the in vivo pulmonary vasodilation in response to SNP was larger in the PVB group. Similarly, the vasoconstriction to eNOS inhibition was larger in the PVB group, particularly during exercise, while pulmonary vasodilation in response to PDE5 inhibition was larger in the PVB group both at rest and during exercise. In isolated pulmonary small arteries, sensitivity to NO donor SNP was similar in PVB vs. sham groups irrespective of HP/LF and HP/HF, while sensitivity to the PDE5 inhibitor sildenafil was lower in PVB HP/HF and sensitivity to bradykinin was lower in PVB HP/LF. In conclusion, both NO availability and sensitivity were increased in the PVB group. The increased nitric oxide sensitivity was not the result of a decreased PDE5 activity, as PDE5 activity was even increased. Some vasodilators differentially effect HP/HF vs. HP/LF vasculature.

19.
Echocardiography ; 36(7): 1427-1430, 2019 07.
Article in English | MEDLINE | ID: mdl-31237036

ABSTRACT

Coarctation of aorta(CoA), complicated by endarteritis in a children is very rare. Here we present a case of endarteritis in an unoperated CoA in a four year old boy. CoA had been diagnosed in the referring hospital, yet the diagnosis of endocarditis distal to CoA, was made in the tertiary center using modified transthoracic echo windows or focused views. After six weeks of intravenous antibiotic treatment, a coarctectomy and end-to-end anastomosis was performed and he recovered clinically well. This case report concludes that echocardiography remains as the standard diagnostic method for identifying intracardiac manifestations of infective endocarditis/endarteritis. Last but foremost, it delineates the importance of modified transthoracic echo windows or focused views in identifying the unusual position of endocarditis.


Subject(s)
Aortic Coarctation/diagnostic imaging , Echocardiography , Endarteritis/diagnostic imaging , Streptococcal Infections/diagnostic imaging , Aortic Coarctation/therapy , Child, Preschool , Combined Modality Therapy , Endarteritis/microbiology , Endarteritis/therapy , Humans , Male , Streptococcal Infections/microbiology , Streptococcal Infections/therapy , Streptococcus , Streptococcus sanguis
20.
Am J Respir Crit Care Med ; 200(7): 910-920, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31042405

ABSTRACT

Rationale: Pulmonary arterial hypertension (PAH) is a degenerative arteriopathy that leads to right ventricular (RV) failure. BRD4 (bromodomain-containing protein 4), a member of the BET (bromodomain and extra-terminal motif) family, has been identified as a critical epigenetic driver for cardiovascular diseases.Objectives: To explore the therapeutic potential in PAH of RVX208, a clinically available BET inhibitor.Methods: Microvascular endothelial cells, smooth muscle cells isolated from distal pulmonary arteries of patients with PAH, rats with Sugen5416 + hypoxia- or monocrotaline + shunt-induced PAH, and rats with RV pressure overload induced by pulmonary artery banding were treated with RVX208 in three independent laboratories.Measurements and Main Results: BRD4 is upregulated in the remodeled pulmonary vasculature of patients with PAH, where it regulates FoxM1 and PLK1, proteins implicated in the DNA damage response. RVX208 normalized the hyperproliferative, apoptosis-resistant, and inflammatory phenotype of microvascular endothelial cells and smooth muscle cells isolated from patients with PAH. Oral treatment with RVX208 reversed vascular remodeling and improved pulmonary hemodynamics in two independent trials in Sugen5416 + hypoxia-PAH and in monocrotaline + shunt-PAH. RVX208 could be combined safely with contemporary PAH standard of care. RVX208 treatment also supported the pressure-loaded RV in pulmonary artery banding rats.Conclusions: RVX208, a clinically available BET inhibitor, modulates proproliferative, prosurvival, and proinflammatory pathways, potentially through interactions with FoxM1 and PLK1. This reversed the PAH phenotype in isolated PAH microvascular endothelial cells and smooth muscle cells in vitro, and in diverse PAH rat models. RVX208 also supported the pressure-loaded RV in vivo. Together, these data support the establishment of a clinical trial with RVX208 in patients with PAH.


Subject(s)
Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Quinazolinones/pharmacology , Transcription Factors/metabolism , Vascular Remodeling/drug effects , Animals , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , DNA Repair , Disease Models, Animal , Endothelial Cells/drug effects , Forkhead Box Protein M1/genetics , Gene Expression Regulation , Humans , Inflammation , Microvessels/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/cytology , Rats , Transcription Factors/antagonists & inhibitors , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...